Math 201

An overview of the exam problems.

Take a minute to look at all the questions, THEN solve each problem on its corresponding page INSIDE the booklet.

1. Let the function f(x) be given by

$$f(x) = \begin{cases} 0, & \text{when } 0 \le x < \pi \\ x - \pi, & \text{when } \pi \le x < 2\pi \end{cases}$$
 when $\pi \le x < 2\pi$

a) (5 pts) Sketch the graph of f(x) for $x \in [-2\pi, 4\pi]$.

- b) (10 pts) The Fourier series of f(x) is $\sum_{n\geq 0} a_n \cos nx + \sum_{n\geq 1} b_n \sin nx$. Find ONLY the coefficients b_n .
- 2. a) (6 pts) Plot the polar graph of the curve $C: r = 1 + \sin \theta$. Also draw the line L: y = 4/9 on your graph.

b) (3 pts) Convert the equation of L to polar coordinates.

- c) (6 pts) Find the (r, θ) -coordinates of the two points of intersection on $L \cap C$.
- 3. Consider the following moving point in space:

$$P(t) = (3t, \sqrt{6} e^t, \frac{1}{2}e^{2t}).$$

- a) (5 pts) Find the velocity and the speed of P(t) at the instant t=0.
- b) (5 pts) What is the arclength of the curve given by P(t) for $0 \le t \le \ln 5$? Simplify your answer.
 - c) (5 pts) Suppose we have a function f(x, y, z) with the property

$$\vec{\nabla} f|_{(3,\sqrt{6}\,e,\frac{1}{2}e^2)} = (e^2, -\sqrt{6}\,e, 5).$$

Find $\frac{d}{dt}f(P(t))$ at the instant when the point P(t) passes through $(3,\sqrt{6}\,e,\frac{1}{2}e^2)$.

- 4. a) (8 pts) Show that $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$ does not exist.
 - b) (8 pts) Show that $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$ does exist (hint: the limit is equal to 0).
- 5. Consider the function $f(x, y, z) = ze^{x^3y}$.

a) (6 pts) Find the gradient of f(x, y, z) at $P_0(1, 1, -1)$.

- b) (7 pts) Find the equation of the tangent plane to the surface f(x, y, z) = -e at P_0 .
- c) (6 pts) Determine the direction in which f(x, y, z) increases most rapidly when the point (x, y, z) moves away from P_0 . Your answer should be a **unit** vector.
- 6. Given a function f(x, y) satisfying f(1, 2) = 4, $\nabla f \Big|_{(1,2)} = (3, 4)$.

a) (6 pts) Approximately how much is f(1.03, 1.99)?

- b) (7 pts) Find a direction \vec{u} in which the directional derivative $D_{\vec{u}}f\Big|_{(1,2)}=0$. Your answer \vec{u} should be a **unit** vector.
- c) (7 pts) Let S be the graph of f. In other words, $S = \{(x, y, z) \in \mathbb{R}^3 \mid z = f(x, y)\}$. Find the equation of the tangent plane to S at the point $P_0(1, 2, 4) \in S$. (Be careful.)